Coefficients Of The Hilbert Polynomial Of A Determinental Ideal

Stefan Trandafir

December 10, 2013

1 Abstract

What follows is a survey of Kulkarni's paper "Counting Of Paths and Coefficients Of Hilbert Polynomial Of A Determinental Ideal". This paper essentially expands on the previous work ("Enumerative Combinatorics Of Young Tableaux") by Abhyankar. In that work, Abhyankar found that the size of a special set of monomials is equal to the Hilbert polynomial evaluated at a certain point. In this paper, Kulkarni finds a correspondence between these coefficients and a special family of lattice paths.

2 Introduction

Before launching into a theoretic description of the paper, I will attempt to lay down a road map for what will follow.

In essence, Abhyankar's work leaves us with the following pertinent facts (note: I will give the proper definitions later).

1. $\mathbf{F}(\mathbf{v}) = |mon((m, n), p, \tilde{a}, v)|$

2. $F(v) = \sum_{e=0}^{\infty} H_e((m,n), p, \tilde{a}, e) \binom{v-e+c}{c}$

3. Given a family of sets $\{X_v\}_{v=0}^{\infty}$ and a family of pairwise disjoint finite sets $\{Y_e\}_{e=0}^{\infty}$, if there exists a function $\phi : \cup X_v \to \cup Y_e$ so that for any $e, v \in \mathbb{N}$ and any $y \in Y_e$ the size of the preimage of y in X_v is dependent only on e and v (call this size $\lambda(v, e)$), and if $\{f(v)\}_{v=0}^{\infty}$ is a family of polynomials in $\mathbb{Q}[v]$ satisfying $f(v) = |X_v|$ and $f(v) = \sum_{e=0}^{\infty} h_e \lambda(v, e)$ (where the λ are a family of \mathbb{Q} -linearly independent polynomials in $\mathbb{Q}[v]$ if we let e go from 0 to ∞), then $|Y_e| = h_e \forall e \in \mathbb{N}$.

In our case, we would like to show that $H_e((m, n), p, \tilde{a}, e$ is the number of lattice paths satisfying certain properties (we will denote this set by $path_e((m, n), p, \tilde{a})$). Thus, our main goal will be to find a function $\phi : \{mon((m, n), p, \tilde{a}, v)\}_{v=0}^{\infty} \to$ $path_e((m,n), p, \tilde{a})_{e=0}^{\infty}$ satisfying our preimage constraint. Furthermore, given v, e we need the size of the preimage in $mon((m,n), p, \tilde{v})$ of an element in $path_e((m,n), p, \tilde{a})$ to be exactly $\binom{v-e+c}{c}$. Then by a combination of 1, 2, and 3 we will have shown that $H_e((m,n), p, \tilde{a}, v) = |mon((m,n), p, \tilde{a}, v)|$.

In order to achieve this, we will define F(v) and both of our pertinent sets, then construct ϕ , and finally show that our chosen ϕ satisfies our requirements.

3 Definitions

<u>Definition</u>: Let $X = [X_{ij}]$ be an mxn matrix of indeterminates. Let K be a commutative ring. Let $u_1, u_2, ..., u_p, r_1, r_2, ..., r_q, v_1, v_2, ..., v_p, s_1, s_2, ..., s_q$ be integers such that

 $\begin{array}{ll} 1 \leq a_1 \leq a_2 \leq \ldots \leq a_p \leq m & \quad 1 \leq b_1 \leq b_2 \leq \ldots \leq b_q \leq n \\ 0 \leq r_1 \leq r_2 \leq \ldots \leq r_p \leq m & \quad 0 \leq s_1 \leq s_2 \leq \ldots \leq s_q \leq n \end{array}$

Let I be the ideal generated by $(r_i + 1)$ -minors of the first a_i rows, and the $(s_j + 1)$ -minors of the first b_j columns. Any ring of the form K[x]/I is called a determinantal ring.

In Kulkarni's paper we study a slight modification of determinantal rings, which I will refer to as Abhyankar Determinantal Rings (or ADR's for short).

<u>Definition</u>: We take the same assumptions as from determinantal rings, but we modify K and I. Firstly, instead of considering any commutative ring K, we instead limit ourselves to fields. Secondly, we let $q = p, r_i = i, s_i = i$ (note, this last definition makes sense since q = p so the indices are now the same). Finally, we add in the $(p + 1) \times (p + 1)$ -minors to generate our ideal I. Then the Abhyankar Determinantal Ring is the ring K[X]/I.

Essentially, our ideal I is generated by the *i*-minors of the first a_i rows or by b_i columns, as well as the (p+1)-minors of our entire matrix. Note that, in general, we will be given our a_i , and b_i in the form of a bivector $\tilde{a} = (a_1, ..., a_p; b_1, ..., b_p)$, and we say that \tilde{a} has length p. Furthermore, the ideals I defined for ADR's are referred to as generalized determinantal ideals, and are denoted $I(p, \tilde{a})$.

<u>Definition</u>: Let R be a ring so that $R = \bigoplus_{i=0}^{\infty} R_i$, where each R_i is an Abelian group under our ring sum. If $R_s R_t \subseteq R_{st}$ for all $s, t \in \mathbb{N}$, then we say that R is a graded ring.

Example: Let R be a commutative ring, and let x be an indeterminate over \overline{R} . Then R[x] is a graded ring, by letting $R_i = \{f | f \in R, deg(f) \leq i\} \cup \{0\}$.

We will now define the Hilbert Polynomial over an ideal I. One should note however, that Hilbert Polynomials are defined more generally.

<u>Definition</u>: Consider the ring $R = K[x_1, ..., x_n]$ where K is a field, and $x_1, ..., x_n$ are indeterminates over K. Let I be some ideal of R, and let A = R/I. Then A is a graded ring via $A = \bigoplus_{d=0}^{\infty} A_d$ where $A_d = \{f + I | f \in R, deg(f) \leq d\}$ (deg(0) = -1). We note that A_d is a finite dimensional vector space over K. Let $h_I(t) = dim_K(A_d)$. This is called the <u>Hilbert Function</u> of I. Further, we define the power series $H_I(t) = \sum_{d=0}^{\infty} h_I(d)t^d$ to be the <u>Hilbert Series</u> of I.

<u>Hilbert-Serre Theorem</u>: Let *I* be an ideal of $K[x_1, ..., x_n]$. Then $H_I(t) = \frac{a_0 + a_1 t + ... + a_k t^k}{(1-t)^{n-1}}$ with $a_i \in \mathbb{Z}$ for i = 1, ..., k. Moreover, $h_I(d) = \sum_{i=0}^k a_i \binom{x+n-i}{n} =: p_I(d)$ for sufficiently large *d*, and $p_I(d) \in \mathbb{Q}[x]$.

<u>Definition</u>: We say that p_I (as defined in the previous theorem) is the <u>Hilbert Polynomial</u> of I.

<u>Definition</u>: Let I an ideal. If $h_I(d) = p_I(d)$ for all $d \ge 0$, then we say that I is a <u>Hilbertian Ideal</u>.

Our next step is to define the special set of monomials referred to in the introduction.

<u>Definition</u>: Let rec(m, n) be the set of points $[1, m] \times [1, n]$. We define a monomial on rec(m, n) to be a map from rec(m, n) to N. Further, we define the index of a subset $S \subseteq rec(m, n)$ to be the maximal k such that a sequence $(a_1, b_1), (a_2, b_2), ..., (a_k, b_k)$ exists, where $1 \leq a_1 < a_2 < ... < a_k \leq m$ and $1 \leq b_1 < b_2 < ... < b_k \leq n$. Finally, we define the index of a monomial to be the index of its support, and the degree of a monomial t to be the sum over all points (x, y) in rec(m, n) of t(x, y). (we indicate these by deg(S), ind(M), deg(M) respectively for a set S and monomial M).

<u>Definition</u>: Let $m, n, p \in \mathbb{Z}$, $v \in \mathbb{N}$, and \tilde{a} be a bivector of length p bounded by (m, n) (bounded by (m, n) means $a_p \leq m$ and $b_p \leq n$). We define $mon((m, n), p, \tilde{a}, v)$ to be the set of monomials on rec(m, n) of degree v, index less than p, and where the index of the first $a_i - 1$ rows or $b_i - 1$ columns is at most i - 1 (for all a_i, b_i from our bivector).

We now conclude this preliminary definition section with a description of the relevant lattice paths.

Definition: We define a lattice path on rec(m, n) to be a sequence $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$ of points in rec(m, n) such that $y_1 = n, x_k = m$, and for all $1 < i \le n$ either 1. $x_i - x_{i-1} = -1$ and $y_i = y_{i-1}$ (a step north) OR 2. $x_i = x_{i-1}$ and $y_i - y_{i-1} = 1$. (a step west).

Furthermore, we refer to (x_1, y_1) and (x_k, y_k) as the starting and end point of our path respectively. We will frequently say that the path 'goes from (x_1, y_1)

to (x_k, y_k) .

<u>Definition</u>: Let $\mathcal{L}=(x_1, y_1), ..., (x_k, y_k)$ be a lattice path on rec(m, n), we say that (x_i, y_i) is a <u>node</u> of \mathcal{L} if $(x_{i-1}, y_{i-1}), (x_i, y_i)$ is a step north, and $(x_i, y_i), (x_{i+1}, y_{i+1})$ is a step west. The singular lattice path (from a to b $(a, b \in rec(m, n))$ with no nodes is called the hook at (a, b).

<u>Definition</u>: We say that a *p*-tuple of lattice paths is <u>non-crossing</u> if the sequences of any two components are disjoint. Furthermore, <u>the set of nodes</u> of a *p*-tuple of lattice paths is the union of their respective nodes.

<u>Note:</u> Any lattice path is uniquely defined by its starting point, ending points and nodes.

<u>Definition</u>: Let $path_e((m, n), p, \tilde{a})$ be the set of *p*-tuples of non-crossing lattice paths on rec(m, n) so that path \mathcal{L}_i starts at a_i and ends at b_i . (As usual, we have $\tilde{a} = (a_1, ..., a_p; b_1, ..., b_p))$).

4 Hilbert Polynomials and Monomials

This section will be a brief summary of Abhyankar's work in establishing a correspondence between the Hilbert polynomial of a generalized determinantal ideal and our special set of monomials.

<u>Theorem</u>: Let R = K[X] be a graded ring over a field K. Let $I(p, \tilde{a})$ be a generalized determinantal ideal in R. Then:

$$dim_{K}(K_{v}/(I(p,\tilde{a})_{v})) = \sum_{d=0}^{\infty} (-1)^{d} F_{d}((m,n), p, \tilde{a}) \binom{v+c-d}{c-d}$$

where

$$F_{d}((m,n), p, \tilde{a}) = \sum_{e=0}^{\infty} {e \choose d} H_{e}((m,n), p, \tilde{a})$$

$$c = \sum_{i=1}^{p} ((m-a_{i}) + (n-b_{i})) + p - 1$$

$$H_{e}((m,n), p, \tilde{a}) = \sum_{e_{1} + \dots + e_{p} = e} \det_{1 \le j \le n} {m-a_{i}+i-j \choose e_{i}+i-j} {n-b_{j}+j-i \choose e_{i}}$$

$$e_{1}, \dots, e_{p} \in \mathbb{N}.$$

As one would expect, the proof of the above theorem is fairly involved -Abhyankar proves it by finding a correspondence between $\dim_K(K_v/I(p,\tilde{a})_v)$ and a certain generalized class of standard young tableaux. At any rate, here is what we should take from this result. Firstly, $\dim_K(K_v/I(p,\tilde{a}))$ is in fact just $h_{I(p,\tilde{a})}(v)$ by definition. Next, when fully expanded, we see that this value is simply a polynomial in v. Thus, our Hilbert function is the same as our Hilbert polynomial, and so the generalized determinantal ideals are Hilbertian. Furthermore, and most importantly, since $\sum_{d=0}^{\infty} (-1)^d {e \choose d} {v+c-d \choose c-d} = {v+c-e \choose c}$, we find that F(v) from our 1st and 2nd facts, is actually just the Hilbert polynomial of the generalized determinantal ideal. Then, by our 1st fact we see that F(v) measures $|mon((m, n), p, \tilde{a}, v)|$.

5 Lattice Paths and Monomials

We've now finally layed down all the necessary definitions to understand fact 3 properly. Let's rephrase it thusly.

3'. We are given a family of sets $\{mon((m, n), p, \tilde{a}, v)\}_{v=0}^{\infty}$ and a family of pairwise disjoint finite sets $\{path_e((m, n), p, \tilde{a})\}_{e=0}^{\infty}$. $\{F(v)\}_{v=0}^{\infty}$ is a family of polynomials over $\mathbb{Q}[v]$ with $F(v) = |mon((m, n), p, \tilde{a}, v)|$, and

 $F(v) = \sum_{e=0}^{\infty} H_e((m,n), p, \tilde{a}, e) \binom{v-e+c}{c}.$ We note that the $\binom{v-e+c}{c}$ form a family of \mathbb{Q} -linearly independent polynomials (their highest degree is different for all differing choices of e), and furthermore that $\binom{v-e+c}{c}$ depends on v, e, m, n, \tilde{a} but not on our specific choice of lattice path. Thus, we can now apply our plan from the introduction to show that $H_e((m, n), p, \tilde{a}, v) = |mon((m, n), p, \tilde{a}, v)|.$

Given a monomial M in $mon((m, n), p, \tilde{a}, v)$ our function will create the sets $S_p, ..., S_1$ which will correspond to lattice paths $\sigma_p, ..., \sigma_1$ respectively. Unfortunately the definition of S_{i-1} will depend upon σ_p . Because of this, we will do things a little backwards and show the correspondence between sets and lattice paths first, and then show how to build the actual sets afterwards.

Algorithm: Let $T \subseteq rec(m, n)$, and (a, b) be given. We construct \mathcal{L} .

0. Take (a, n) to be the starting point, and (m, b) to be the end point. Set $i_0 := a$.

1. Let $j'_k = \max\{j : (i, j) \in T, i > i_{k-1}\} \cup \{b\}.$

2. If $j'_k = b$ then take \mathcal{L} the lattice path with node set $\{(i_1, j_1), ..., (i_{k-1}, j_{k-1})\}$. (note that if j_1 is not defined, then this set is empty, so our lattice path is simply the hook from (a, n) to (m, b)).

3. Let $j_k = j'_k$. Let $i_k = \max\{i : (i, j_k) \in T\}$.

4. If $i_k = m$, then take \mathcal{L} to be the lattice path with node set $\{(i_1, j_1), ..., (i_k, j_k)\}$. 5. Set k := k + 1. Go back to 1.

Let's briefly show that this algorithm does yield a lattice path, and that it will be unique. Well, by our definitions we note that the set of points $\{(i_1, j_1), ..., i_k, j_k\}$ (considered as a subsequence) has some lattice path starting at (a, n) and ending at (m, b) iff $n \ge j_1 > ... > j_k > b$ and $a < i_1 < ... < i_k \le m$. Well in Step 1 we choose j'_k so that $i > i_{k-1}$ and then in Step 3 we choose i_k to be the max i among $(i, j_k) \in S$. Thus clearly $i_k > i_{k-1}$. The proof that $j_k < j_{k-1}$ is essentially the same, and clearly the bounds involving a, b, n, m hold. Finally, we noted that every lattice path is uniquely determined by our starting and ending points along with the node set, thus our algorithm does yield a unique lattice path.

Now, we show how to build the sets $T_p, ..., T_1$.

 $\begin{array}{l} \underline{\text{Algorithm:}} \text{ Let } M \in mon((m,n), p, \tilde{a}, v).\\ \hline 0. \text{ Let } \overline{T_p} = supp(M) \text{ (where } supp(M) \text{ denotes the support of } M).\\ 1. \text{ If } i = 0 \text{ then return } T_p, ..., T_1.\\ 2. \text{ Let } S_i = T_i \cap \sigma_i \text{ (where } \sigma_i \text{ is the lattice path corresponding to } T_i, (a_i, b_i) \text{ from our previous algorithm, and considered as a set).}\\ 3. \text{ Let } T_{i-1} = T_i \setminus S_i.\\ 4. \text{ Set } i := i-1. \end{array}$

We thus take ϕ to be the combination of the above algorithms that takes in $M \in \{mon((m, n), p, \tilde{a}, v)\}_{v=0}^{\infty}$ and outputs $\sigma = (\sigma_1, ..., \sigma_p) \in \{path_e((m, n), p, \tilde{a})\}_{e=0}^{\infty}$. Naturally, we'd like to check that ϕ is well-defined. Observe that the T_i form a descending chain. Then $S_i \cap S_j$ is empty for i > j since $S_i \cap S_j = S_i \cap (T_j \cap \sigma_{i-1}) \subseteq S_i \cap T_j \subseteq S_i \cap T_{i-1} = S_i \cap (T_i \setminus S_i) = \{\}$. In addition, since we used T_p to output a *p*-tuple of paths, if we input T_k (k < p) instead, we would output a *k*-tuple of paths by construction. Thus, we will need T_k to be the support of some monomial $N \in mon((m, n), k, (a_1, ..., a_k; b_1, ..., b_k), v)$. Well, this will be true as long as $ind(T_k) \leq k$, else we could make more than k lattice paths from T_k .

Proposition: $ind(T_k) \leq k$.

<u>Proof:</u> By induction on k.

Base Case: For k = p, $T_p = supp(M)$ for some $M \in mon((m, n), p, \tilde{a}, v)$. Thus ind(M) = p. But $ind(M) = ind(T_P)$ by definition.

Now assume the result for all $k \ge i$. Assume for a contradiction that $ind(T_{i-1}) \ge i$. Well since $ind(T_i) = i$ by assumption, we have $ind(T_{i-1}) = i$.. Then we can find a sequence $(x_1, y_1), ..., (x_i, y_i)$ in T_{i-1} with $1 \le x_1 < ... < x_i \le m$ and $1 \le y_1 < ... < y_i \le n$. Then $x_i \ge a_i$ and $y_i \ge b_i$ (since by the definition of $mon((m, n), p, \tilde{a}, v)$ the index over the first $a_i - 1$ rows or $b_i - 1$ columns is at most i-1). Further, we have that σ_i contains a point (x, y) so that $x > x_i$ and $y > y_i$ (this is clear by our original choice of j_k , and the fact that (x_i, y_i) cannot be in path σ_i - by construction of T_i). But then, note that our sequence is also in T_i so that we can augment by (x, y). This is a contradiction since then $ind(T_i) = i+1$.

Now we draw a few conclusions to ultimately show that ϕ is surjective:

1. The *p*-tuple σ is non-crossing by construction. Further, any path σ_i considered as a subset of rec(m, n) must have index 1. This is geometrically clear. Thus $ind(S_i) = 1$ since $S_i \subseteq \sigma_i$.

2. Because of 1, we must have $ind(T_i) = i$ since we are always removing subsets of index 1. Therefore, in particular $ind(T_0) = 0$, and so T_0 is empty.

3. The S_i form a partition of T, by construction and since T_0 is empty.

4. Due to 3, we have that $T \subseteq \sigma$ (σ is viewed by considering each σ_i as a set, and taking their union).

5. The nodes of each σ_i are contained in S_i (from the construction of σ_i), and thus the set of all nodes of σ are contained in T.

Therefore, for any lattice path $\mathcal{L} \in \{path_e((m,n), p, \tilde{a})\}_{e=0}^{\infty}$ we can take the monomial M in $mon((m,n), p, \tilde{a}, v)$ where v is the number of nodes of \mathcal{L} , so that supp(M) is the set of nodes of \mathcal{L} and M maps each of these points to 1. Then by application of these algorithms to M we would obtain \mathcal{L} , and so ϕ is surjective.

Finally, we would like to find the exact size of $\phi^{-1}(\sigma)$ restricted to $mon((m, n), p, \tilde{a}, v)$, where $\sigma \in path_e((m, n), p, \tilde{a})$. Well, the total number of points on σ is c + 1since path σ_i uses $(m - a_i) + (n - b_i) + 1$ points. Thus, by 4, all monomials M considered must have their support a subset of these c + 1 points. Similarly, by 5, the support must contain all e nodes. By counting all such monomials we arrive at $\binom{v-e+c}{c}$ different possibilities.

Now we are finally able to state:

<u>Theorem</u>: Given positive integers m, n, p, and a bivector of length p bounded by (m, n), we have $H_e((m, n), p, \tilde{a}) = |path_e((m, n), p, \tilde{a}).$

Lastly, if we colour the nodes black or red, we find that:

Corollary: For positive integers m, n, p, d, and a bivector \tilde{a} of length p bounded by (m, n), $F_d((m, n), p, \tilde{a})$ is the number of non-crossing p-tuples of lattice paths in rec(m, n) based on \tilde{a} with exactly d black nodes.

6 Works Consulted

"Counting of Paths and Coefficients of the Hilbert Polynomial of a Determinantal Ideal" by Kulkarni

"Enumerative Combinatorics of Young Tableaux" by Abhyankar

"A Course in Commutative Algebra" by Kemper and Gregor

"Determinantal Rings" by Bruns and Vetter