
Coefficients Of The Hilbert Polynomial Of A

Determinental Ideal

Stefan Trandafir

December 10, 2013

1 Abstract

What follows is a survey of Kulkarni’s paper ”Counting Of Paths and Coef-
ficients Of Hilbert Polynomial Of A Determinental Ideal”. This paper essen-
tially expands on the previous work (”Enumerative Combinatorics Of Young
Tableaux”) by Abhyankar. In that work, Abhyankar found that the size of a
special set of monomials is equal to the Hilbert polynomial evaluated at a certain
point. In this paper, Kulkarni finds a correspondence between these coefficients
and a special family of lattice paths.

2 Introduction

Before launching into a theoretic description of the paper, I will attempt to lay
down a road map for what will follow.

In essence, Abhyankar’s work leaves us with the following pertinent facts
(note: I will give the proper definitions later).
1. F(v) = |mon((m,n), p, ã, v)|
2. F(v) =

∞∑
e=0

He((m,n), p, ã, e)
(
v−e+c

c

)
3. Given a family of sets {Xv}∞v=0 and a family of pairwise disjoint finite sets
{Ye}∞e=0, if there exists a function φ : ∪Xv → ∪Ye so that for any e, v ∈ N and
any y ∈ Ye the size of the preimage of y in Xv is dependent only on e and v (call
this size λ(v, e)), and if {f(v)}∞v=0 is a family of polynomials in Q[v] satisfying

f(v) = |Xv| and f(v) =
∞∑
e=0

heλ(v, e) (where the λ are a family of Q-linearly

independent polynomials in Q[v] if we let e go from 0 to ∞), then |Ye| = he ∀
e ∈ N.

In our case, we would like to show that He((m,n), p, ã, e is the number of lattice
paths satisfying certain properties (we will denote this set by pathe((m,n), p, ã)).
Thus, our main goal will be to find a function φ : {mon((m,n), p, ã, v)}∞v=0 →
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pathe((m,n), p, ã)∞e=0 satisfying our preimage constraint. Furthermore, given
v, e we need the size of the preimage in mon((m,n), p, ṽ) of an element in
pathe((m,n), p, ã) to be exactly

(
v−e+c

c

)
. Then by a combination of 1, 2, and 3

we will have shown that He((m,n), p, ã, v) = |mon((m,n), p, ã, v)|.

In order to achieve this, we will define F (v) and both of our pertinent sets,
then construct φ, and finally show that our chosen φ satisfies our requirements.

3 Definitions

Definition: Let X = [Xij ] be an mxn matrix of indeterminates. Let K be
a commutative ring. Let u1, u2, ..., up, r1, r2, ..., rq, v1, v2, ..., vp, s1, s2, ..., sq be
integers such that

1 ≤ a1 ≤ a2 ≤ ...≤ ap ≤ m 1 ≤ b1 ≤ b2 ≤ ... ≤ bq ≤ n
0 ≤ r1 ≤ r2 ≤ ... ≤ rp ≤ m 0 ≤ s1 ≤ s2 ≤ ... ≤ sq ≤ n

Let I be the ideal generated by (ri + 1)-minors of the first ai rows, and the
(sj + 1)-minors of the first bj columns. Any ring of the form K[x]/I is called a
determinantal ring.

In Kulkarni’s paper we study a slight modification of determinantal rings, which
I will refer to as Abhyankar Determinantal Rings (or ADR’s for short).

Definition: We take the same assumptions as from determinantal rings, but
we modify K and I. Firstly, instead of considering any commutative ring K,
we instead limit ourselves to fields. Secondly, we let q = p, ri = i, si = i (note,
this last definition makes sense since q = p so the indices are now the same).
Finally, we add in the (p + 1) × (p + 1)-minors to generate our ideal I. Then
the Abhyankar Determinantal Ring is the ring K[X]/I.

Essentially, our ideal I is generated by the i-minors of the first ai rows or by bi
columns, as well as the (p+1)-minors of our entire matrix. Note that, in general,
we will be given our ai, and bi in the form of a bivector ã = (a1, ...ap; b1, ...bp),
and we say that ã has length p. Furthermore, the ideals I defined for ADR’s
are referred to as generalized determinantal ideals, and are denoted I(p, ã).

Definition: Let R be a ring so that R =
⊕∞

i=0Ri, where each Ri is an Abelian
group under our ring sum. If RsRt ⊆ Rst for all s, t ∈ N, then we say that R is
a graded ring.

Example: Let R be a commutative ring, and let x be an indeterminate over
R. Then R[x] is a graded ring, by letting Ri = {f |f ∈ R, deg(f) ≤ i} ∪ {0}.

We will now define the Hilbert Polynomial over an ideal I. One should note
however, that Hilbert Polynomials are defined more generally.
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Definition: Consider the ring R = K[x1, ...xn] where K is a field, and x1, ...xn
are indeterminates over K. Let I be some ideal of R, and let A = R/I. Then
A is a graded ring via A =

⊕∞
d=0Ad where Ad = {f + I|f ∈ R, deg(f) ≤ d}

(deg(0) = −1). We note that Ad is a finite dimensional vector space over K.
Let hI(t) = dimK(Ad). This is called the Hilbert Function of I. Further, we

define the power series HI(t) =
∞∑
d=0

hI(d)td to be the Hilbert Series of I.

Hilbert-Serre Theorem: Let I be an ideal of K[x1, ..., xn]. Then

HI(t) = a0+a1t+...+akt
k

(1−t)n−1) with ai ∈ Z for i = 1, ..., k. Moreover,

hI(d) =
k∑

i=0

ai
(
x+n−i

n

)
=: pI(d) for sufficiently large d, and pI(d) ∈ Q[x].

Definition: We say that pI (as defined in the previous theorem)is the Hilbert Polynomial
of I.

Definition: Let I an ideal. If hI(d) = pI(d) for all d ≥ 0, then we say that
I is a Hilbertian Ideal.

Our next step is to define the special set of monomials referred to in the in-
troduction.

Definition: Let rec(m,n) be the set of points [1,m]× [1, n]. We define a
monomial on rec(m,n) to be a map from rec(m,n) to N. Further, we define
the index of a subset S ⊆ rec(m,n) to be the maximal k such that a sequence
(a1, b1), (a2, b2), ..., (ak, bk) exists, where 1 ≤ a1 < a2 < ... < ak ≤ m and
1 ≤ b1 < b2 < ... < bk ≤ n. Finally, we define the index of a monomial to be the
index of its support, and the degree of a monomial t to be the sum over all points
(x, y) in rec(m,n) of t(x, y). (we indicate these by deg(S), ind(M), deg(M) re-
spectively for a set S and monomial M).

Definition: Let m,n, p ∈ Z, v ∈ N, and ã be a bivector of length p bounded
by (m,n) (bounded by (m,n) means ap ≤ m and bp ≤ n). We define
mon((m,n), p, ã, v) to be the set of monomials on rec(m,n) of degree v, index
less than p, and where the index of the first ai − 1 rows or bi − 1 columns is at
most i− 1 (for all ai, bi from our bivector).

We now conclude this preliminary definition section with a description of the
relevant lattice paths.

Definition: We define a lattice path on rec(m,n) to be a sequence (x1, y1), (x2, y2), .., (xk, yk)
of points in rec(m,n) such that y1 = n, xk = m, and for all 1 < i ≤ n either
1. xi − xi−1 = −1 and yi = yi−1 (a step north) OR
2. xi = xi−1 and yi − yi−1 = 1. (a step west).
Furthermore, we refer to (x1, y1) and (xk, yk) as the starting and end point of
our path respectively. We will frequently say that the path ’goes from (x1, y1)
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to (xk, yk).

Definition: Let L=(x1, y1), ..., (xk, yk) be a lattice path on rec(m,n), we say that
(xi, yi) is a node of L if (xi−1, yi−1), (xi, yi) is a step north, and (xi, yi), (xi+1, yi+1)
is a step west. The singular lattice path (from a to b (a, b ∈ rec(m,n)) with no
nodes is called the hook at (a, b).

Definition: We say that a p-tuple of lattice paths is non-crossing if the sequences
of any two components are disjoint. Furthermore, the set of nodes of a p-tuple
of lattice paths is the union of their respective nodes.

Note: Any lattice path is uniquely defined by its starting point, ending points
and nodes.

Definition: Let pathe((m,n), p, ã) be the set of p-tuples of non-crossing lattice
paths on rec(m,n) so that path Li starts at ai and ends at bi. (As usual, we
have ã = (a1, ..., ap; b1, ..., bp))).

4 Hilbert Polynomials and Monomials

This section will be a brief summary of Abhyankar’s work in establishing a
correspondence between the Hilbert polynomial of a generalized determinantal
ideal and our special set of monomials.

Theorem: Let R = K[X] be a graded ring over a field K. Let I(p, ã) be a
generalized determinantal ideal in R. Then:

dimK(Kv/(I(p, ã)v) =
∞∑
d=0

(−1)dFd((m,n), p, ã)
(
v+c−d
c−d

)
where

Fd((m,n), p, ã) =
∞∑
e=0

(
e
d

)
He((m,n), p, ã)

c =
p∑

i=1

((m− ai) + (n− bi)) + p− 1

He((m,n), p, ã) =
∑

e1+...ep=e
det

1≤j≤n

(
m−ai+i−j
ei+i−j

) (
n−bj+j−i

ei

)
e1, ..., ep ∈ N.

As one would expect, the proof of the above theorem is fairly involved -
Abhyankar proves it by finding a correspondence between dimK(Kv/I(p, ã)v)
and a certain generalized class of standard young tableaux. At any rate, here
is what we should take from this result. Firstly, dimK(Kv/I(p, ã)) is in fact
just hI(p,ã)(v) by definition. Next, when fully expanded, we see that this value
is simply a polynomial in v. Thus, our Hilbert function is the same as our
Hilbert polynomial, and so the generalized determinantal ideals are Hilbertian.

Furthermore, and most importantly, since
∞∑
d=0

(−1)d
(
e
d

) (
v+c−d
c−d

)
=
(
v+c−e

c

)
, we
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find that F (v) from our 1st and 2nd facts, is actually just the Hilbert polynomial
of the generalized determinantal ideal. Then, by our 1st fact we see that F (v)
measures |mon((m,n), p, ã, v)|.

5 Lattice Paths and Monomials

We’ve now finally layed down all the necessary definitions to understand fact 3
properly. Let’s rephrase it thusly.

3’. We are given a family of sets {mon((m,n), p, ã, v)}∞v=0 and a family of
pairwise disjoint finite sets {pathe((m,n), p, ã)}∞e=0. {F (v)}∞v=0 is a family of
polynomials over Q[v] with F (v) = |mon((m,n), p, ã, v)|, and

F (v) =
∞∑
e=0

He((m,n), p, ã, e)
(
v−e+c

c

)
. We note that the

(
v−e+c

c

)
form a family

of Q-linearly independent polynomials (their highest degree is different for all
differing choices of e), and furthermore that

(
v−e+c

c

)
depends on v, e,m, n, ã but

not on our specific choice of lattice path. Thus, we can now apply our plan from
the introduction to show that He((m,n), p, ã, v) = |mon((m,n), p, ã, v)|.

Given a monomial M in mon((m,n), p, ã, v) our function will create the sets
Sp, ...S1 which will correspond to lattice paths σp, ..., σ1 respectively. Unfortu-
nately the definition of Si−1 will depend upon σp. Because of this, we will do
things a little backwards and show the correspondence between sets and lattice
paths first, and then show how to build the actual sets afterwards.

Algorithm: Let T ⊆ rec(m,n), and (a, b) be given. We construct L.
0. Take (a, n) to be the starting point, and (m, b) to be the end point. Set
i0 := a.
1. Let j′k = max{j : (i, j) ∈ T, i > ik−1} ∪ {b}.
2. If j′k = b then take L the lattice path with node set {(i1, j1), ..., (ik−1, jk−1)}.
(note that if j1 is not defined, then this set is empty, so our lattice path is simply
the hook from (a, n) to (m, b)).
3. Let jk = j′k. Let ik = max{i : (i, jk) ∈ T}.
4. If ik = m, then take L to be the lattice path with node set {(i1, j1), ...(ik, jk)}.
5. Set k := k + 1. Go back to 1.

Let’s briefly show that this algorithm does yield a lattice path, and that it will be
unique. Well, by our definitions we note that the set of points {(i1, j1), ..., ik, jk}
(considered as a subsequence) has some lattice path starting at (a, n) and end-
ing at (m, b) iff n ≥ j1 > ... > jk > b and a < i1 < ... < ik ≤ m. Well in
Step 1 we choose j′k so that i > ik−1 and then in Step 3 we choose ik to be the
max i among (i, jk) ∈ S. Thus clearly ik > ik−1. The proof that jk < jk−1 is
essentially the same, and clearly the bounds involving a, b, n,m hold. Finally,
we noted that every lattice path is uniquely determined by our starting and
ending points along with the node set, thus our algorithm does yield a unique
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lattice path.

Now, we show how to build the sets Tp, ..., T1.

Algorithm: Let M ∈ mon((m,n), p, ã, v).
0. Let Tp = supp(M) (where supp(M) denotes the support of M).
1. If i = 0 then return Tp, ..., T1.
2. Let Si = Ti ∩ σi (where σi is the lattice path corresponding to Ti, (ai, bi)
from our previous algorithm, and considered as a set).
3. Let Ti−1 = Ti \ Si.
4. Set i := i− 1.

We thus take φ to be the combination of the above algorithms that takes in M ∈
{mon((m,n), p, ã, v)}∞v=0 and outputs σ = (σ1, ..., σp) ∈ {pathe((m,n), p, ã)}∞e=0.
Naturally, we’d like to check that φ is well-defined.
Observe that the Ti form a descending chain.
Then Si ∩ Sj is empty for i > j since
Si ∩ Sj = Si ∩ (Tj ∩ σi−1) ⊆ Si ∩ Tj ⊆ Si ∩ Ti−1 = Si ∩ (Ti \ Si) = {}.
In addition, since we used Tp to output a p-tuple of paths, if we input Tk (k < p)
instead, we would output a k-tuple of paths by construction. Thus, we will need
Tk to be the support of some monomialN ∈ mon((m,n), k, (a1, ..., ak; b1, ..., bk), v).
Well, this will be true as long as ind(Tk) ≤ k, else we could make more than k
lattice paths from Tk.

Proposition: ind(Tk) ≤ k.

Proof: By induction on k.
Base Case: For k = p, Tp = supp(M) for some M ∈ mon((m,n), p, ã, v). Thus
ind(M) = p. But ind(M) = ind(TP ) by definition.
Now assume the result for all k ≥ i. Assume for a contradiction that ind(Ti−1) ≥
i. Well since ind(Ti) = i by assumption, we have ind(Ti−1) = i.. Then we can
find a sequence (x1, y1), ..., (xi, yi) in Ti−1 with 1 ≤ x1 < ... < xi ≤ m and
1 ≤ y1 < ... < yi ≤ n. Then xi ≥ ai and yi ≥ bi (since by the definition of
mon((m,n), p, ã, v) the index over the first ai−1 rows or bi−1 columns is at most
i−1). Further, we have that σi contains a point (x, y) so that x > xi and y > yi
(this is clear by our original choice of jk, and the fact that (xi, yi) cannot be in
path σi - by construction of Ti). But then, note that our sequence is also in Ti so
that we can augment by (x, y). This is a contradiction since then ind(Ti) = i+1.

Now we draw a few conclusions to ultimately show that φ is surjective:
1. The p-tuple σ is non-crossing by construction. Further, any path σi consid-
ered as a subset of rec(m,n) must have index 1. This is geometrically clear.
Thus ind(Si) = 1 since Si ⊆ σi.
2. Because of 1, we must have ind(Ti) = i since we are always removng subsets
of index 1. Therefore, in particular ind(T0) = 0, and so T0 is empty.
3. The Si form a partition of T , by construction and since T0 is empty.
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4. Due to 3, we have that T ⊆ σ (σ is viewed by considering each σi as a set,
and taking their union).
5. The nodes of each σi are contained in Si (from the construction of σi), and
thus the set of all nodes of σ are contained in T .

Therefore, for any lattice path L ∈ {pathe((m,n), p, ã)}∞e=0 we can take the
monomial M in mon((m,n), p, ã, v) where v is the number of nodes of L, so
that supp(M) is the set of nodes of L and M maps each of these points to 1.
Then by application of these algorithms to M we would obtain L, and so φ is
surjective.

Finally, we would like to find the exact size of φ−1(σ) restricted tomon((m,n), p, ã, v),
where σ ∈ pathe((m,n), p, ã). Well, the total number of points on σ is c + 1
since path σi uses (m − ai) + (n − bi) + 1 points. Thus, by 4, all monomials
M considered must have their support a subset of these c+ 1 points. Similarly,
by 5, the support must contain all e nodes. By counting all such monomials we
arrive at

(
v−e+c

c

)
different possiblities.

Now we are finally able to state:

Theorem: Given positive integers m,n, p, and a bivector of length p bounded by
(m,n), we have
He((m,n), p, ã) = |pathe((m,n), p, ã).

Lastly, if we colour the nodes black or red, we find that:

Corollary: For positive integers m,n, p, d, and a bivector ã of length p bounded
by (m,n), Fd((m,n), p, ã) is the number of non-crossing p-tuples of lattice paths
in rec(m,n) based on ã with exactly d black nodes.
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